首页> 外文OA文献 >Perception, motor learning, and speed adaptation exploiting body dynamics: case studies in a quadruped robot
【2h】

Perception, motor learning, and speed adaptation exploiting body dynamics: case studies in a quadruped robot

机译:利用身体动力学的知觉,运动学习和速度适应:四足机器人的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Animals and humans are constantly faced with a highly dimensional stream of incoming sensory information. At the same time, they have to command their highly complex and multidimensional bodies. Yet, they seamlessly cope with this situation and successfully perform various tasks. For autonomous robots, this poses a challenge: robots performing in the real world are often faced with the curse of dimensionality. In other words, the size of the sensory as well as motor spaces becomes too large for the robot to efficiently cope with them in real time. In this paper, we demonstrate how the curse of dimensionality can be tamed by exploiting the robot’s morphology and interaction with the environment, or the robot’s embodiment (see e.g., [1]). We present three case studies with underactuated quadrupedal robots. In the first case study, we look at terrain detection. While running on different surfaces, the robot generates structured multimodal sensory information that can be used to detect different terrain types. In the second case study, we shift our attention to the motor space: the robot is learning different gaits. The online learning procedure capitalizes on the fact that the robot is underactuated and on a “soft“ control policy. In the third case study, we move one level higher and demonstrate how - given an appropriate gait - a speed adaptation task can be greatly simplified and learned online.
机译:动物和人类始终面临着高维度的传入感官信息流。同时,他们必须指挥其高度复杂和多维的机构。但是,他们无缝应对这种情况并成功执行了各种任务。对于自主机器人而言,这构成了一个挑战:在现实世界中表现出的机器人通常面临着维度的诅咒。换句话说,感觉空间以及电机空间变得太大,以至于机器人无法实时有效地应对它们。在本文中,我们演示了如何通过利用机器人的形态,与环境的相互作用或机器人的具体实施方式来驯服维数的诅咒(例如,参见[1])。我们介绍了三个欠驱动四足机器人的案例研究。在第一个案例研究中,我们着眼于地形检测。当机器人在不同的表面上行驶时,它会生成结构化的多模式感官信息,可用于检测不同的地形类型。在第二个案例研究中,我们将注意力转移到运动空间:机器人正在学习不同的步态。在线学习过程利用了机器人驱动不足和“软”控制策略这一事实。在第三个案例研究中,我们将水平提高了一层,并演示了如何在适当的步态下快速简化速度适应性任务并在线学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号